Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.436
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612723

RESUMO

Bone morphogenetic protein 2 (BMP2) has been reported to regulate adipogenesis, but its role in porcine beige adipocyte formation remains unclear. Our data reveal that BMP2 is significantly induced at the early stages of porcine beige adipocyte differentiation. Additionally, supplementing rhBMP2 during the early stages, but not the late stages of differentiation, significantly enhances porcine SVF adipogenesis, thermogenesis, and proliferation. Furthermore, compared to the empty plasmid-transfected-SVFs, BMP2-overexpressed SVFs had the enhanced lipid accumulation and thermogenesis, while knockdown of BMP2 in SVFs exhibited the opposite effect. The RNA-seq of the above three types of cells revealed the enrichment of the annotation of thermogenesis, brown cell differentiation, etc. In addition, the analysis also highlights the significant enrichment of cell adhesion, the MAPK cascade, and PPARγ signaling. Mechanistically, BMP2 positively regulates the adipogenic and thermogenic capacities of porcine beige adipocytes by activating PPARγ expression through AKT/mTOR and MAPK signaling pathways.


Assuntos
Adipogenia , Proteínas Proto-Oncogênicas c-akt , Suínos , Animais , Adipogenia/genética , Proteína Morfogenética Óssea 2/genética , PPAR gama , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
2.
BMC Genomics ; 25(1): 358, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605318

RESUMO

BACKGROUND: Hox gene family is an important transcription factor that regulates cell process, and plays a role in the process of adipocytes differentiation and fat deposition. Previous transcriptome sequencing studies have indicated that the Homeobox A9 gene (HOXA9) is a candidate gene for regulating the process of bovine lipid metabolism, but the function and specific mechanism of action remain unclear. Therefore, this study aims to explore the role of HOXA9 in the proliferation, differentiation and apoptosis of bovine preadipocytes through gain-of-function and lose-of-function. RESULT: It found HOXA9 highly expressed in bovine adipose tissue, and its expression level changed significantly during adipocytes differentiation process. It gave a hint that HOXA9 may be involved in the process of bovine lipid metabolism. The results of HOXA9 gain-of-function experiments indicated that HOXA9 appeared to act as a negative regulator not only in the differentiation but also in the proliferation of bovine preadipocytes, which is mainly reflected that overexpression of HOXA9 down-regulate the mRNA and protein expression level of PPARγ, CEBPα and FABP4 (P < 0.05). The mRNA expression level of CDK1, CDK2, PCNA, CCNA2, CCNB1, CCND1 and CCNE2, as well as the protein expression of CDK2 also significantly decreased. The decrease of lipid droplets content was the main characteristic of the phenotype (P < 0.01), which further supported the evidence that HOXA9 was a negative regulator of preadipocytes differentiation. The decrease of cell proliferation rate and EdU positive rate, as well as the limitation of transition of preadipocytes from G0/G1 phase to S phase also provided evidence for the inhibition of proliferation. Apart from this above, we noted an interesting phenomenon that overexpression of HOXA9 showed in a significant upregulation of both mRNA and protein level of apoptosis markers, accompanied by a significant increase in cell apoptosis rate. These data led us not to refute the fact that HOXA9 played an active regulatory role in apoptosis. HOXA9 loss-of-function experiments, however, yielded the opposite results. Considering that HOXA9 acts as a transcription factor, we predicted its target genes. Dual luciferase reporter assay system indicated that overexpression of HOXA9 inhibits activity of PCNA promoter. CONCLUSION: Taken together, we demonstrated for the first time that HOXA9 played a role as a negative regulatory factor in the differentiation and proliferation of preadipocytes, but played a positive regulatory role in apoptosis, and it may play a regulatory role by targeting PCNA. This study provides basic data for further exploring the regulatory network of intramuscular fat deposition in bovine.


Assuntos
Adipócitos , Genes Homeobox , Animais , Bovinos , Adipócitos/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Diferenciação Celular/genética , Proliferação de Células , Fatores de Transcrição/metabolismo , Apoptose/genética , RNA Mensageiro/metabolismo , Adipogenia/genética
3.
J Transl Med ; 22(1): 363, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632591

RESUMO

Interleukin-33 (IL-33), an emerging cytokine within the IL-1 family, assumes a pivotal function in the control of obesity. However, the specific mechanism of its regulation of obesity formation remains unclear. In this study, we found that the expression level of IL-33 increased in visceral adipose tissue in mice fed with a high-fat diet (HFD) compared with that in mice fed with a normal diet (ND). In vitro, we also found the expression level of IL-33 was upregulated during the adipogenesis of 3T3-L1 cells. Functional test results showed that knockdown of IL-33 in 3T3-L1 cells differentiation could promote the accumulation of lipid droplets, the content of triglyceride and the expression of adipogenic-related genes (i.e. PPAR-γ, C/EBPα, FABP4, LPL, Adipoq and CD36). In contrast, overexpression of IL-33 inhibits adipogenic differentiation. Meanwhile, the above tests were repeated after over-differentiation of 3T3-L1 cells induced by oleic acid, and the results showed that IL-33 played a more significant role in the regulation of adipogenesis. To explore the mechanism, transcriptome sequencing was performed and results showed that IL-33 regulated the PPAR signaling pathway in 3T3-L1 cells. Further, Western blot and confocal microscopy showed that the inhibition of IL-33 could promote PPAR-γ expression by inhibiting the Wnt/ß-catenin signal in 3T3-L1 cells. This study demonstrated that IL-33 was an important regulator of preadipocyte differentiation and inhibited adipogenesis by regulating the Wnt/ß-catenin/PPAR-γ signaling pathway, which provided a new insight for further research on IL-33 as a new intervention target for metabolic disorders.


Assuntos
Adipogenia , Interleucina-33 , Camundongos , Animais , Adipogenia/genética , Adipócitos/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , beta Catenina/metabolismo , Diferenciação Celular , Obesidade/metabolismo , Via de Sinalização Wnt
4.
Sci Rep ; 14(1): 6656, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509237

RESUMO

The feed-forward loop between the transcription factors Ppar-gamma and C/ebp-alpha is critical for lineage commitment during adipocytic differentiation. Ppar-gamma interacts with epigenetic cofactors to activate C/ebp-alpha and the downstream adipocytic gene expression program. Therefore, knowledge of the epigenetic cofactors associated with Ppar-gamma, is central to understanding adipocyte differentiation in normal differentiation and disease. We found that Prmt6 is present with Ppar-gamma on the Ppar-gamma and C/ebp-alpha promoter. It contributes to the repression of C/ebp-alpha expression, in part through its ability to induce H3R2me2a. During adipocyte differentiation, Prmt6 expression is reduced and the methyltransferase leaves the promoters. As a result, the expression of Ppar-gamma and C/ebp-alpha is upregulated and the adipocytic gene expression program is established. Inhibition of Prmt6 by a small molecule enhances adipogenesis, opening up the possibility of epigenetic manipulation of differentiation. Our data provide detailed information on the molecular mechanism controlling the Ppar-gamma-C/ebp-alpha feed-forward loop. Thus, they advance our understanding of adipogenesis in normal and aberrant adipogenesis.


Assuntos
Adipogenia , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/metabolismo , Adipogenia/genética , PPAR alfa/metabolismo , Regulação da Expressão Gênica , Adipócitos/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , PPAR gama/genética , PPAR gama/metabolismo , Células 3T3-L1
5.
Adipocyte ; 13(1): 2330355, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38527945

RESUMO

Adipogenic differentiation and thermogenesis in brown adipose tissue (BAT) undergo dynamic processes, altering phenotypes and gene expressions. Proper reference genes in gene expression analysis are crucial to mitigate experimental variances and ensure PCR efficacy. Unreliable reference genes can lead to erroneous gene expression quantification, resulting in data misinterpretation. This study focused on identifying suitable reference genes for mouse brown adipocyte research, utilizing brown adipocytes from the Ucp1-luciferase ThermoMouse model. Comparative analysis of gene expression data under adipogenesis and thermogenesis conditions was conducted, validating 13 housekeeping genes through various algorithms, including DeltaCq, BestKeeper, geNorm, Normfinder, and RefFinder. Tbp and Rer1 emerged as optimal references for Ucp1 and Pparg expression in brown adipogenesis, while Tbp and Ubc were ideal for the expression analysis of these target genes in thermogenesis. Conversely, certain conventional references, including Actb, Tubb5, and Gapdh, proved unstable as reference genes under both conditions. These findings stress the critical consideration of reference gene selection in gene expression analysis within specific biological systems to ensure accurate conclusions.


Assuntos
Adipócitos Marrons , Tecido Adiposo Marrom , Camundongos , Animais , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Adipogenia/genética , Perfilação da Expressão Gênica , Termogênese/genética
6.
Cell Mol Biol Lett ; 29(1): 45, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553665

RESUMO

BACKGROUND: Both glucocorticoid receptor and peroxisome proliferator-activated receptor-γ (PPARγ) play a critical role in adipocyte differentiation. Mifepristone is not only an antagonist of the glucocorticoid receptor but also an agonist of PPARγ. Therefore, the present study investigated the effect of mifepristone on adipocyte differentiation. METHODS: Mouse 3T3-L1 cells were used as a model for adipocyte differentiation. The lipid droplet formation was evaluated with Bodipy493/503 staining and the expression of adipocyte markers [adiponectin and adipocyte fatty acid binding protein-4 (Fabp4)] was evaluated with quantitative PCR and immunoblot analyses for indication of adipocyte differentiation. siRNA and neutralizing antibodies were used to elucidate the molecular mechanism of mifepristone-induced adipocyte differentiation. Luciferase reporter assay was used to examine the effect of mifepristone on the promoter activity of PPAR-response element (PPRE). The DNA microarray analysis was used to characterize the transcriptome of the mifepristone-induced adipocytes. In vivo adipogenic effect of mifepristone was examined in mice. RESULTS: Mifepristone not only enhanced adipocyte differentiation induced by the conventional protocol consisting of insulin, dexamethasone and 3-isobutyl-1-methylxanthine but also induced adipocyte differentiation alone, as evidenced by lipid droplets formation and induction of the expression of adiponectin and Fabp4. These effects were inhibited by an adiponectin-neutralizing antibody and a PPARγ antagonist. Mifepristone activated the promoter activity of PPRE in a manner sensitive to PPARγ antagonist. A principal component analysis (PCA) of DNA microarray data revealed that the mifepristone-induced adipocytes represent some characteristics of the in situ adipocytes in normal adipose tissues to a greater extent than those induced by the conventional protocol. Mifepristone administration induced an increase in the weight of epididymal, perirenal and gluteofemoral adipose tissues. CONCLUSIONS: Mifepristone alone is capable of inducing adipocyte differentiation in 3T3-L1 cells and adipogenesis in vivo. PPARγ plays a critical role in the mifepristone-induced adipocyte differentiation. Mifepristone-induced adipocytes are closer to the in situ adipocytes than those induced by the conventional protocol. The present study proposes a single treatment with mifepristone as a novel protocol to induce more physiologically relevant adipocytes in 3T3-L1 cells than the conventional protocol.


Assuntos
Adiponectina , Mifepristona , Camundongos , Animais , Adiponectina/metabolismo , Adiponectina/farmacologia , Mifepristona/farmacologia , Mifepristona/metabolismo , PPAR gama/metabolismo , Células 3T3-L1 , Receptores de Glucocorticoides/metabolismo , Diferenciação Celular , Adipogenia/genética , Adipócitos/metabolismo
7.
Int J Biol Macromol ; 264(Pt 2): 130737, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460642

RESUMO

Muscle development and intramuscular fat (IMF) deposition are intricate physiological processes characterized by multiple gene expressions and interactions. In this research, the phenotypic variations in the breast muscle of Jingyuan chickens were examined at three different time points: 42, 126, and 180 days old. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were performed to identify differentially methylated genes (DMGs) responsible for regulating muscle development and IMF deposition. The findings indicate a significant increase in breast muscle weight (BMW), myofiber diameter, and cross-sectional area, as well as IMF content, in correlation with the progressive number of growing days in Jingyuan chickens. The findings also revealed that 380 hypo-methylated and 253 hyper-methylated DMGs were identified between the three groups of breast muscle. Module gene and DMG association analysis identified m6A methylation-mediated multiple DMGs associated with muscle development and fat metabolism. In vitro cell modeling analysis reveals stage-specific differences in the expression of CUBN, MEGF10, BOP1, and BMPR2 during the differentiation of myoblasts and intramuscular preadipocytes. Cycloleucine treatment significantly inhibited the expression levels of CUBN, BOP1, and BMPR2, and promoted the expression of MEGF10. These results suggest that m6A methylation-mediated CUBN, MEGF10, BOP1, and BMPR2 can serve as potential candidate genes for regulating muscle development and IMF deposition, and provide an important theoretical basis for further investigation of the functional mechanism of m6A modification involved in adipogenesis.


Assuntos
Adipogenia , Galinhas , Animais , Galinhas/genética , Galinhas/metabolismo , Adipogenia/genética , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Desenvolvimento Muscular/genética
8.
FEBS Lett ; 598(8): 945-955, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472156

RESUMO

TG-interacting factor 1 (TGIF1) contributes to the differentiation of murine white preadipocyte and human adipose tissue-derived stem cells; however, its regulation is not well elucidated. Insulin is a component of the adipogenic cocktail that induces ERK signaling. TGIF1 phosphorylation and sustained stability in response to insulin were reduced through the use of specific MEK inhibitor U0126. Mutagenesis at T235 or T239 residue of TGIF1 in preadipocytes led to dephosphorylation of TGIF1. The reduced TGIF1 stability resulted in an increase in p27kip1 expression, a decrease in phosphorylated Rb expression and cellular proliferation, and a reduced accumulation of lipids compared to the TGIF1-overexpressed cells. These findings highlight that insulin/ERK-driven phosphorylation of the T235 or T239 residue at TGIF1 is crucial for adipocyte differentiation.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Diferenciação Celular , Proteínas de Homeodomínio , Insulina , Animais , Camundongos , Fosforilação/efeitos dos fármacos , Insulina/metabolismo , Adipócitos/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Humanos , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Proliferação de Células/efeitos dos fármacos , Butadienos/farmacologia
9.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474122

RESUMO

Alternative splicing (AS) plays a crucial role in regulating gene expression, function, and diversity. However, limited reports exist on the identification and comparison of AS in Eastern and Western pigs. Here, we analyzed 243 transcriptome data from eight tissues, integrating information on transcription factors (TFs), selection signals, splicing factors (SFs), and quantitative trait loci (QTL) to comprehensively study alternative splicing events (ASEs) in pigs. Five ASE types were identified, with Mutually Exclusive Exon (MXE) and Skipped Exon (SE) ASEs being the most prevalent. A significant portion of genes with ASEs (ASGs) showed conservation across all eight tissues (63.21-76.13% per tissue). Differentially alternative splicing genes (DASGs) and differentially expressed genes (DEGs) exhibited tissue specificity, with blood and adipose tissues having more DASGs. Functional enrichment analysis revealed coDASG_DEGs in adipose were enriched in pathways associated with adipose deposition and immune inflammation, while coDASG_DEGs in blood were enriched in pathways related to immune inflammation and metabolism. Adipose deposition in Eastern pigs might be linked to the down-regulation of immune-inflammation-related pathways and reduced insulin resistance. The TFs, selection signals, and SFs appeared to regulate ASEs. Notably, ARID4A (TF), NSRP1 (SF), ANKRD12, IFT74, KIAA2026, CCDC18, NEXN, PPIG, and ROCK1 genes in adipose tissue showed potential regulatory effects on adipose-deposition traits. NSRP1 could promote adipogenesis by regulating alternative splicing and expression of CCDC18. Conducting an in-depth investigation into AS, this study has successfully identified key marker genes essential for pig genetic breeding and the enhancement of meat quality, which will play important roles in promoting the diversity of pork quality and meeting market demand.


Assuntos
Adipogenia , Processamento Alternativo , Suínos , Animais , Adipogenia/genética , Melhoramento Vegetal , Transcriptoma , Inflamação , Perfilação da Expressão Gênica
10.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474216

RESUMO

Excessive lipid accumulation in adipocytes is a primary contributor to the development of metabolic disorders, including obesity. The consumption of bioactive compounds derived from natural sources has been recognized as being safe and effective in preventing and alleviating obesity. Therefore, we aimed to explore the antilipidemic effects of pennogenin 3-O-ß-chacotrioside (P3C), a steroid glycoside, on hypertrophied 3T3-L1 adipocytes. Oil Red O and Nile red staining demonstrated a P3C-induced reduction in lipid droplet accumulation. Additionally, the increased expression of adipogenic and lipogenic factors, including PPARγ and C/EBPα, during the differentiation process was significantly decreased by P3C treatment at both the protein and mRNA levels. Furthermore, P3C treatment upregulated the expression of fatty acid oxidation-related genes such as PGC1α and CPT1a. Moreover, mitochondrial respiration and ATP generation increased following P3C treatment, as determined using the Seahorse XF analyzer. P3C treatment also increased the protein expression of mitochondrial oxidative phosphorylation in hypertrophied adipocytes. Our findings suggest that P3C could serve as a natural lipid-lowering agent, reducing lipogenesis and enhancing mitochondrial oxidative capacity. Therefore, P3C may be a promising candidate as a therapeutic agent for obesity-related diseases.


Assuntos
Adipogenia , Metabolismo dos Lipídeos , Camundongos , Animais , Adipogenia/genética , Obesidade/metabolismo , Hipertrofia , Lipídeos/farmacologia , Estresse Oxidativo , Células 3T3-L1 , PPAR gama/metabolismo
11.
Elife ; 122024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376133

RESUMO

Glucocorticoid-induced osteonecrosis of the femoral head (GONFH) is a common refractory joint disease characterized by bone damage and the collapse of femoral head structure. However, the exact pathological mechanisms of GONFH remain unknown. Here, we observed abnormal osteogenesis and adipogenesis associated with decreased ß-catenin in the necrotic femoral head of GONFH patients. In vivo and in vitro studies further revealed that glucocorticoid exposure disrupted osteogenic/adipogenic differentiation of bone marrow mesenchymal cells (BMSCs) by inhibiting ß-catenin signaling in glucocorticoid-induced GONFH rats. Col2+ lineage largely contributes to BMSCs and was found an osteogenic commitment in the femoral head through 9 mo of lineage trace. Specific deletion of ß-catenin gene (Ctnnb1) in Col2+ cells shifted their commitment from osteoblasts to adipocytes, leading to a full spectrum of disease phenotype of GONFH in adult mice. Overall, we uncover that ß-catenin inhibition disrupting the homeostasis of osteogenic/adipogenic differentiation contributes to the development of GONFH and identify an ideal genetic-modified mouse model of GONFH.


Assuntos
Glucocorticoides , Células-Tronco Mesenquimais , Osteonecrose , beta Catenina , Animais , Humanos , Camundongos , Ratos , Adipogenia/genética , beta Catenina/genética , Diferenciação Celular , Cabeça do Fêmur/patologia , Glucocorticoides/efeitos adversos , Homeostase , Osteogênese/genética , Osteonecrose/patologia
12.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396700

RESUMO

Understanding the intricate molecular mechanisms governing the fate of human adipose-derived stem cells (hASCs) is essential for elucidating the delicate balance between adipogenic and osteogenic differentiation in both healthy and pathological conditions. Long non-coding RNAs (lncRNAs) have emerged as key regulators involved in lineage commitment and differentiation of stem cells, operating at various levels of gene regulation, including transcriptional, post-transcriptional, and post-translational processes. To gain deeper insights into the role of lncRNAs' in hASCs' differentiation, we conducted a comprehensive analysis of the lncRNA transcriptome (RNA-seq) and translatome (polysomal-RNA-seq) during a 24 h period of adipogenesis and osteogenesis. Our findings revealed distinct expression patterns between the transcriptome and translatome during both differentiation processes, highlighting 90 lncRNAs that are exclusively regulated in the polysomal fraction. These findings underscore the significance of investigating lncRNAs associated with ribosomes, considering their unique expression patterns and potential mechanisms of action, such as translational regulation and potential coding capacity for microproteins. Additionally, we identified specific lncRNA gene expression programs associated with adipogenesis and osteogenesis during the early stages of cell differentiation. By shedding light on the expression and potential functions of these polysome-associated lncRNAs, we aim to deepen our understanding of their involvement in the regulation of adipogenic and osteogenic differentiation, ultimately paving the way for novel therapeutic strategies and insights into regenerative medicine.


Assuntos
Adipogenia , RNA Longo não Codificante , Humanos , Adipogenia/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Osteogênese/genética , Diferenciação Celular/genética , Células-Tronco/metabolismo , Polirribossomos/metabolismo
13.
Nat Commun ; 15(1): 1646, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388532

RESUMO

Adipose tissue macrophages can promote beige adipose thermogenesis by altering local sympathetic activity. Here, we perform sympathectomy in mice and further eradicate subcutaneous adipose macrophages and discover that these macrophages have a direct beige-promoting function that is independent of sympathetic system. We further identify adipocyte Ets1 as a vital mediator in this process. The anti-inflammatory M2 macrophages suppress Ets1 expression in adipocytes, transcriptionally activate mitochondrial biogenesis, as well as suppress mitochondrial clearance, thereby increasing the mitochondrial numbers and promoting the beiging process. Male adipocyte Ets1 knock-in mice are completely cold intolerant, whereas male mice lacking Ets1 in adipocytes show enhanced energy expenditure and are resistant to metabolic disorders caused by high-fat-diet. Our findings elucidate a direct communication between M2 macrophages and adipocytes, and uncover a function for Ets1 in responding to macrophages and negatively governing mitochondrial content and beige adipocyte formation.


Assuntos
Adipócitos Bege , Adipogenia , Animais , Masculino , Camundongos , Adipócitos/metabolismo , Adipócitos Bege/metabolismo , Adipogenia/genética , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Termogênese/genética
14.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367915

RESUMO

The scaffold protein 14-3-3ζ is an established regulator of adipogenesis and postnatal adiposity. We and others have demonstrated the 14-3-3ζ interactome to be diverse and dynamic, and it can be examined to identify novel regulators of physiological processes, including adipogenesis. In the present study, we sought to determine if factors that influence adipogenesis during the development of obesity could be identified in the 14-3-3ζ interactome found in white adipose tissue of lean or obese TAP-tagged-14-3-3ζ overexpressing mice. Using mass spectrometry, differences in the abundance of novel, as well as established, adipogenic factors within the 14-3-3ζ interactome could be detected in adipose tissues. One novel candidate was revealed to be plakoglobin, the homolog of the known adipogenic inhibitor, ß-catenin, and herein, we report that plakoglobin is involved in adipocyte differentiation. Plakoglobin is expressed in murine 3T3-L1 cells and is primarily localized to the nucleus, where its abundance decreases during adipogenesis. Depletion of plakoglobin by siRNA inhibited adipogenesis and reduced PPARγ2 expression, and similarly, plakoglobin depletion in human adipose-derived stem cells also impaired adipogenesis and reduced lipid accumulation post-differentiation. Transcriptional assays indicated that plakoglobin does not participate in Wnt/ß-catenin signaling, as its depletion did not affect Wnt3a-mediated transcriptional activity. Taken together, our results establish plakoglobin as a novel regulator of adipogenesis in vitro and highlights the ability of using the 14-3-3ζ interactome to identify potential pro-obesogenic factors.


Assuntos
Proteínas 14-3-3 , beta Catenina , Camundongos , Humanos , Animais , beta Catenina/genética , beta Catenina/metabolismo , Proteínas 14-3-3/metabolismo , Via de Sinalização Wnt , gama Catenina/genética , gama Catenina/metabolismo , Adipócitos/metabolismo , Adipogenia/genética , Obesidade/metabolismo
15.
In Vitro Cell Dev Biol Anim ; 60(3): 258-265, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424378

RESUMO

It has been demonstrated that angiopoietin-like protein 4 (ANGPTL4) plays an important regulatory role in lipid metabolism and backfat deposition appears to vary in different pig breeds. However, the correlation between ANGPTL4 and backfat deposition have not been well characterized and the role of ANGPTL4 in regulating adipogenesis remains unclear. Therefore, this study aimed to investigate correlation between ANGPTL4 and backfat deposition and to explore the effects of ANGPTL4 on preadipocyte differentiation and the underlying mechanism. Our results showed that the backfat thickness and the ANGPTL4 gene expression of Laiwu pigs were significantly higher than those in DLY pigs and the ANGPTL4 gene expression was positively correlated with backfat thickness both in DLY pigs and Laiwu pigs. Moreover, an increase in ANGPTL4 expression and activation of autophagy were observed during the differentiation of stromal vascular fraction cells. In addition, knockdown of ANGPTL4 inhibited the differentiation of 3T3-L1 cells with decreased expression of LC3-II and ATG5 and increased expression of SQSTM1, suggesting the involvement of autophagy in ANGPTL4-mediated adipogenesis. In conclusion, these results suggested that ANGPTL4 is positively correlated with backfat deposition in pigs and knockdown of ANGPTL4 inhibits adipogenesis of preadipocyte via autophagy, providing new insights into the regulation of fat deposition and to improve the carcass quality and meat quality of porcine.


Assuntos
Adipogenia , Metabolismo dos Lipídeos , Suínos , Animais , Adipogenia/genética , Proteína 4 Semelhante a Angiopoietina/genética , Diferenciação Celular/genética , Autofagia/genética
16.
Gene ; 908: 148295, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38387707

RESUMO

Intramuscular fat (IMF) deposition profoundly influences meat quality and economic value in beef cattle production. Meanwhile, contemporary developments in epigenetics have opened new outlooks for understanding the molecular basics of IMF regulation, and it has become a key area of research for world scholars. Therefore, the aim of this paper was to provide insight and synthesis into the intricate relationship between epigenetic mechanisms and IMF deposition in beef cattle. The methodology involves a thorough analysis of existing literature, including pertinent books, academic journals, and online resources, to provide a comprehensive overview of the role of epigenetic studies in IMF deposition in beef cattle. This review summarizes the contemporary studies in epigenetic mechanisms in IMF regulation, high-resolution epigenomic mapping, single-cell epigenomics, multi-omics integration, epigenome editing approaches, longitudinal studies in cattle growth, environmental epigenetics, machine learning in epigenetics, ethical and regulatory considerations, and translation to industry practices from perspectives of IMF deposition in beef cattle. Moreover, this paper highlights DNA methylation, histone modifications, acetylation, phosphorylation, ubiquitylation, non-coding RNAs, DNA hydroxymethylation, epigenetic readers, writers, and erasers, chromatin immunoprecipitation followed by sequencing, whole genome bisulfite sequencing, epigenome-wide association studies, and their profound impact on the expression of crucial genes governing adipogenesis and lipid metabolism. Nutrition and stress also have significant influences on epigenetic modifications and IMF deposition. The key findings underscore the pivotal role of epigenetic studies in understanding and enhancing IMF deposition in beef cattle, with implications for precision livestock farming and ethical livestock management. In conclusion, this review highlights the crucial significance of epigenetic pathways and environmental factors in affecting IMF deposition in beef cattle, providing insightful information for improving the economics and meat quality of cattle production.


Assuntos
Epigenômica , Hipercolesterolemia , Bovinos/genética , Animais , Músculo Esquelético/metabolismo , Regulação da Expressão Gênica , Adipogenia/genética , Hipercolesterolemia/metabolismo , Epigênese Genética
17.
Cells ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334645

RESUMO

We previously published that in patients with infantile hemangioma (IH) at the onset (T0) colony forming unit-fibroblasts (CFU-Fs) are present in in vitro cultures from PB. Herein, we characterize these CFU-Fs and investigate their potential role in IH pathogenesis, before and after propranolol therapy. The CFU-F phenotype (by flow cytometry), their differentiation capacity and ability to support angiogenesis (by in vitro cultures) and their gene expression (by RT-PCR) were evaluated. We found that CFU-Fs are actual circulating MSCs (cMSCs). In patients at T0, cMSCs had reduced adipogenic potential, supported the formation of tube-like structures in vitro and showed either inflammatory (IL1ß and ESM1) or angiogenic (F3) gene expression higher than that of cMSCs from CTRLs. In patients receiving one-year propranolol therapy, the cMSC differentiation in adipocytes improved, while their support in in vitro tube-like formation was lost; no difference was found between patient and CTRL cMSC gene expressions. In conclusion, in patients with IH at T0 the cMSC reduced adipogenic potential, their support in angiogenic activity and the inflammatory/angiogenic gene expression may fuel the tumor growth. One-year propranolol therapy modifies this picture, suggesting cMSCs as one of the drug targets.


Assuntos
Hemangioma , Células-Tronco Mesenquimais , Humanos , Propranolol/farmacologia , Propranolol/uso terapêutico , Propranolol/metabolismo , Transcriptoma , Células-Tronco Mesenquimais/metabolismo , Adipogenia/genética , Hemangioma/genética , Hemangioma/tratamento farmacológico , Hemangioma/metabolismo
18.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38364365

RESUMO

Circular RNAs (circRNAs) are a class of non-coding RNAs that play important roles in preadipocyte differentiation and adipogenesis. However, little is known about genome-wide identification, expression profile, and function of circRNAs in sheep. To investigate the role of circRNAs during ovine adipogenic differentiation, the subcutaneous adipose tissue of Tibetan rams was collected in June 2022. Subsequently, the preadipocytes were immediately isolated from collected adipose tissue and then induced to begin differentiation. The adipocytes samples cultured on days 0, 2, and 8 of preadipocytes differentiation were used to perform RNA sequencing (RNA-seq) analysis to construct the expression profiles of circRNAs. Subsequently, the function of differentially expressed circRNAs was investigated by performing the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of their parent genes. Finally, a circRNAs-miRNAs-mRNAs network involved in adipogenic differentiation was been analyzed. As a result, a total of 6,449 candidate circRNAs were identified in ovine preadipocytes. Of these circRNAs identified, 63 candidate circRNAs were differentially expressed among the three differentiation stages and their parent genes were mainly enriched in acetyl-CoA metabolic process, positive regulation of lipid biosynthetic process, positive regulation of steroid biosynthetic process, and focal adhesion pathway (P < 0.05). Based on a circRNAs-miRNAs-mRNAs regulatory network constructed, circ_004977, circ_006132 and circ_003788 were found to function as competing endogenous RNAs (ceRNAs) to regulate ovine preadipocyte differentiation and lipid metabolism. The results provide an improved understanding of functions and molecular mechanisms of circRNAs underlying ovine adipogenesis in sheep.


The moderate fat deposition contributes to improve mutton quality, which is associated with the differentiation of preadipocytes. To investigate roles of circular RNAs (circRNAs) in preadipocyte differentiation, we identified circRNAs on days 0, 2, and 8 of preadipocytes differentiation and compared the expression profile of circRNAs at different adipogenic differentiation stages. A total of 6,449 candidate circRNAs were identified, among which 63 candidate circRNAs were differentially expressed among the three differentiation stages. The parent genes of differentially expressed circRNAs were enriched in several biological process and pathways related to lipid metabolism and synthesis. In addition, several circRNAs may regulate ovine preadipocyte differentiation by interacting with microRNAs (miRNAs). The results reveal the potential roles of circRNAs in adipogenic differentiation of sheep.


Assuntos
MicroRNAs , RNA Circular , Ovinos/genética , Animais , Masculino , RNA Circular/genética , Adipogenia/genética , RNA-Seq/veterinária , MicroRNAs/genética , RNA Mensageiro/genética , Redes Reguladoras de Genes , Análise de Sequência de RNA/veterinária , Carneiro Doméstico/genética
19.
Biochem J ; 481(5): 345-362, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38314646

RESUMO

Adipogenesis, defined as the development of mature adipocytes from stem cell precursors, is vital for the expansion, turnover and health of adipose tissue. Loss of adipogenic potential in adipose stem cells, or impairment of adipogenesis is now recognised as an underlying cause of adipose tissue dysfunction and is associated with metabolic disease. In this study, we sought to determine the role of AMP-activated protein kinase (AMPK), an evolutionarily conserved master regulator of energy homeostasis, in adipogenesis. Primary murine adipose-derived stem cells were treated with a small molecule AMPK activator (BI-9774) during key phases of adipogenesis, to determine the effect of AMPK activation on adipocyte commitment, maturation and function. To determine the contribution of the repression of lipogenesis by AMPK in these processes, we compared the effect of pharmacological inhibition of acetyl-CoA carboxylase (ACC). We show that AMPK activation inhibits adipogenesis in a time- and concentration-dependent manner. Transient AMPK activation during adipogenic commitment leads to a significant, ACC-independent, repression of adipogenic transcription factor expression. Furthermore, we identify a striking, previously unexplored inhibition of leptin gene expression in response to both short-term and chronic AMPK activation irrespective of adipogenesis. These findings reveal that in addition to its effect on adipogenesis, AMPK activation switches off leptin gene expression in primary mouse adipocytes independently of adipogenesis. Our results identify leptin expression as a novel target of AMPK through mechanisms yet to be identified.


Assuntos
Proteínas Quinases Ativadas por AMP , Adipogenia , Animais , Camundongos , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia/genética , Tecido Adiposo/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Leptina/genética , Leptina/farmacologia , Leptina/metabolismo
20.
Mol Biol Rep ; 51(1): 272, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302806

RESUMO

BACKGROUND: Wnt10b is one of critical Wnt family members that being involved in networks controlling stemness, pluripotency and cell fate decisions. However, its role in adipose-resident T lymphocytes and further in fat metabolism yet remains largely unknown. METHODS AND RESULTS: In the present study, we demonstrated a distinctive effect for Wnt10b on the relative balance of T lymphocytes in adipose tissue by using a Wnt10b knockdown mouse model. Wnt10b knockdown led to a reduction of adipose-resident CD4+ T cells and an elevation of Foxp3+/CD4+ Treg cells. Wnt10b-knockdown mice fed with standard diet showed less white fat deposition owing to the suppressed adipogenic process. Moreover, under high fat diet conditions, Wnt10b knockdown resulted in an alleviated obesity symptoms, as well as an improvement of glucose homeostasis and hepatic steatosis. CONCLUSIONS: Collectively, we reveal an unexpected and novel function for Wnt10b in mediating the frequency of adipose-resident T cell subsets, that when knockdown skewing toward a Treg-dominated phenotype and further improving fat metabolism.


Assuntos
Tecido Adiposo Branco , Tecido Adiposo , Camundongos , Animais , Tecido Adiposo/fisiologia , Obesidade/genética , Diferenciação Celular , Adipogenia/genética , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Proteínas Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...